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ABSTRACT: This paper examines the interactions between two spheres in an unbounded fluid. Using bispherical coordinates, 
no-slip and far-field boundary conditions, an exact solution of Stokes equations for the translational motion of two spheres of 
arbitrary size and arbitrary orientation with respect to their directions of motion are obtained. This solution is in form of truncated 
infinite series. The various hydrodynamic forces exerted on the spheres are calculated. The results from the force calculations 
show that when the two spheres are in close proximity, greater number of terms has to be retained in the series before 
convergence is achieved. 
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1  Introduction 

A body moving in a viscous fluid generates long range flow disturbances which influences the 

motion of other bodies in the flow. This mutual influence via the fluid is called hydrodynamic 

interaction. This is of particular interest in various disciplines such as physics, colloid chemistry 

and weather forecasting and other application areas (see [3, 4, 12]). There has been a great 

interest in recent years concerning inter particle forces especially in the field of electric and 

magnetic fields (see [14, 16]). The understanding of many-particle systems begins with the 

systematic study of simpler systems. The two-sphere system can be used as bases for studying 

inter particles forces. The description of the hydrodynamic interaction of two spheres in terms of 

linear Navier-Stokes equations for steady, incompressible flow (creeping-flow equations or 

Stokes flow equations) brings about substantial mathematical simplification of the flow field. In 

many situations the creeping-flow equations provide an adequate approximation to the actual 

motion. This approach was used by many authors to study the hydrodynamic interactions 

between two spheres in Stokes flow. Such studies includes; [13] who considered the flow in the 

vicinity of two spheres rotating about their line of centres.  The motion of two spheres in a shear 

field was investigated by [11]. Davies (1969) analyzed the translation and rotation of two 
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unequal spheres in a viscous fluid. Others are; [5] considered the flow past ensemble of particles 

via numerical simulations. The theory of forces between two spheres was studied theoretically 

using dipole by [7,  8]. The hydrodynamic drag force on two spheres was also studied via 

numerical simulations by [18].  The solution for the equation of motion of a viscous sphere in the 

presence of interracial slip was derived by [12]. All the solutions, however, are highly involved 

and require extensive numerical calculations to arrive at explicit results. So that now the 

translation and rotation of two spheres about an axis with no-slip boundary conditions on the 

spheres is known. The corresponding problem for spheres with arbitrary sizes and orientation 

with respect to their directions of motion has not received much attention. For this reason, a 

general recurrence relation satisfying the Stokes equation for arbitrary translation direction is 

unavailable in literature. This general form of recurrence relation has been derived in this paper. 

The methodology employed is using bispherical coordinates, no-slip and far-field boundary 

conditions, and an exact solution of Stokes equations for the translational motion of two 

spherical bodies of arbitrary size and orientation with respect to their directions of motion are 

obtained. The various hydrodynamic forces exerted on each sphere are calculated.  

2  Description of the problem 

Suppose we wish to determine the velocity field in the vicinity of two spheres moving with 

arbitrary velocities in an incompressible Newtonian fluid. We shall denote the local fluid 

velocity and pressure fields by v  and P, respectively. We assumed that flow is sufficiently slow 

for v to satisfy the Stokes equations  

 2  ,Pµ∇ = ∇v  (2.1) 

  · 0∇ =v  (2.2) 

where  µ is the dynamic viscosity of the fluid. We further assumed that the no-slip applies on the 

surfaces the spheres and that 0→v  far away from the spheres. The creeping flow equations 

(equations (2.1) and (2.2) represent a substantial simplification of the over all flow field and have 

a number of advantages: Analytical solutions of the equations are possible for some relatively 

complex geometry. Also because of their linearity, the superposition principle can be used to add 

solutions together.   

2.1  Geometry of the problem. 

Geometrically, the problem is depicted as in Figure 1. The geometric quantities needed to 

describe the problem and for stating the boundary conditions are also shown on the Figure. The 

spheres are denoted by I and II, with radii denoted by R
I
 and R

II
 respectively. The distance 

between their centres is denoted by d. The inherent bispherical nature of the problem suggests 

that it can best be tackled using bispherical coordinate system ( , , )ξ η φ  in which the governing 

equations and the boundary conditions can be accommodated relatively easily. This coordinate 
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system has its origin on the spheres line of centres at the point which divides d into unequal 

parts. In terms of the cylindrical coordinates ( , , )zρ φ , the bispherical coordinates are given by [3]  

 
sin sinh

, , .
cosh cos cosh cos

c c
z

η ξ
ρ φ φ

ξ η ξ η
= = =

− −
 (2.3) 

By restricting the range of the coordinates to  

 0 , , 0 2 ,η π ξ φ π≤ ≤ − ∞ < < ∞ ≤ ≤  (2.4) 

the coordinate system is unique (see [6]). In this work, we shall assumed that the sphere above 

the z = 0 (see Figure 1) corresponds to 
I

ξ ξ=  with radius IR  and the sphere in the lower half 

plane corresponds to  
II

ξ ξ= −  with radius IIR  and that both ,
II I

ξ ξ  are positive. The centre to 

centre separation between the two spherical bodies will be denoted by 

  I IId  h h= +   (2.5) 

 

 

Figure 1 Schematic diagram of the geometry of two sphere problem. 
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where 2 2 2

, ,I II I IIh R c= +  (see Figure 1). Thus, the centre to centre distance between the two spheres 

can be written as  

 2 2 2 2 .I IId R c R c= + + +  (2.6) 

 

After eliminating the square roots from (1.6) we obtained,   

 ( )( )
1

2 22 2 2 2 21
( ) 4 , .

2
I II I II I IIc d R R R R d R R

d
= − + − ≥ +  (2.7) 

3  Analysis for spheres of arbitrary size and speeds 

The pressure field of the Stokes equation satisfies Laplace’s equation (see [1]) and the velocity 

field, being a particular solution of (2.1), also satisfies Laplace’s equation. A natural link 

provided by equation (2.3) between bispherical and cylindrical coordinates allows one to derive 

the solution to Laplace’s equation in terms of the former from the latter. In cylindrical 

coordinates ( , , )zρ φ  equation (2.1) can be written as (see [1])  

 2

2 2

1 2
( ) ,

vP
v

φ
ρ

ρ µ ρ ρ φ

∂ ∂
= ∇ − − 

∂ ∂ 
 (3.1) 

 2

2 2

1 2
( ) ,

vP
v

ρ
φ

ρ φ µ ρ ρ φ

∂ ∂
= ∇ − + 

∂ ∂ 
 (3.2) 

 2 ,z

P
v

z µ

 ∂
= ∇ 

∂  
 (3.3) 

where the Laplacian operator is defined as   

 
2 2 2

2

2 2 2 2

1 1
,

zρ ρ ρ ρ φ

∂ ∂ ∂ ∂
∇ = + + +

∂ ∂ ∂ ∂
 (3.4) 

and ,  and 
z

v v vρ φ are components of the velocity field in cylindrical coordinates. Hence the 

continuity equation (2.2) can be written as,  

 
1 1

0.z
v v v

v
z

ρ φ
ρρ ρ ρ φ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (3.5) 

In cylindrical coordinates, the pressure and the components of the velocity field of the Stokes 

equation satisfy the following general form (see [11])   
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 0 0

0

( sin( ) cos( ))
k k

k

P W k W k
c

µ
φ φ

∞

−
=

= +∑  (3.6) 

 0 1 1 0 1 1

0

1
[( )sin( ) ( ) cos( )]

2
k k k k k k k

v W W W k W W W k
c c

ρ

ρ ρ
φ φ− −

= − − −
∞= + + + + +∑       (3.7) 

 0 0 0 0

0

1
[( 2 )sin( ) ( 2 ) cos( )]

2
z k k k k k

z z
v W W k W W k

c c
φ φ= − −

∞= + + +∑   (3.8) 

 1 1 1 1

0

1
[( ) cos( ) ( ) sin( )]

2
k k k k k

v W W k W W kφ φ φ− −
= − −

∞= − − −∑  (3.9) 

where i

m
W  expressed explicitly in terms of bispherical coordinates are given by  

 
1

| |2

| |

2 1 2 1
[ cosh(( ) ) sinh(( ) )] (cos( ))

2 2

i i i m i

m mn mn n

n m i

n n
W A B Pξ ξ η

∞
+

= +

+ +
= ∆ +∑  (3.10) 

and 

 
1

0 | |2

| |

2 1 2 1
[ cosh(( ) ) sinh(( ) )] (cos( )).

2 2

i i m i

m mn mn n

n m i

n n
W A B Pξ ξ η

∞
+

= +

+ +
= ∆ +∑  (3.11) 

( )m

n
P µ  are associated Legendre polynomials of order n and rank m define by  

 2 /2( ) (1 ) ( )
m

m m

n nm

d
P P

d
µ µ µ

µ
= −  (3.12) 

 cosh( ) cos( ).ξ η∆ = −  (3.13) 

Here, i m and n are integers. The next task is to determine the various constants 

, , ,i i i i

mn mn mn mn
A A B B  so that equations (2.1) and (2.2) are satisfied.  

3.1  Determination of coefficients from the continuity equation. 

Differentiating equations (3.7) through (3.9) and substituting the appropriate terms into equation 

(3.5) and simplifying we obtained the following, 

 
0

0 1 13 1 1
( ) ( ) ( ) 2 0,k

k k k

Wz k k
W W W

c c c z z

ρ

ρ ρ ρ ρ ρ
− ∂∂ ∂ + ∂ ∂ −

+ + + + + + + =
∂ ∂ ∂ ∂ ∂

 (3.14) 

and  
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0

0 1 13 1 1
( ) ( ) ( ) 2 0.k

k k k

Wz k k
W W W

c c c z z

ρ

ρ ρ ρ ρ ρ
− −

− − −

∂∂ ∂ + ∂ ∂ −
+ + + + + + + =

∂ ∂ ∂ ∂ ∂
 (3.15) 

In order to simplify the problem, we derived the following relations for transforming equation 

(3.14) into bispherical coordinates 

 
1

( cosh( ) cos( ) sinh( )sin( ) ),
z c

ξ η ξ η
ξ ξ η

∂ ∂ ∂ ∂
= − + −

∂ ∂ ∂ ∂
 (3.16) 

 
1

(cosh( )cos( ) sinh( )sin( ) ).
c

ξ η ξ η
ρ η η ξ

∂ ∂ ∂ ∂
= − −

∂ ∂ ∂ ∂
 (3.17) 

Making use of these results in equations (3.14), (3.15) we obtained the continuity equation in 

bispherical coordinates as, 
0 0

0 1 1

1 1 0 1 1 0

3 [( 1) (1 ) ] csc( ) cos( )sinh( ) sin( ) cosh( )

(cosh( )cos( ) 1)( 2 ) sin( )sinh( )( 2 ) 0.

k k
k k k

k k k k k k

W W
W k W k W

W W W W W W

η η ξ η ξ
ξ η

ξ η η ξ
η η ξ ξ ξ η

− ± ±
± ± ±

− −
± ± ± ± ± ±

∂ ∂
+ + + − ∆ − −

∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ − + − − + + =

∂ ∂ ∂ ∂ ∂ ∂

 (3.18) 

Numerical values of constants satisfying the continuity equation in the form given by equations 

(3.14) and (3.15) depends upon the value of k Different values of k will give rise to different 

continuity equation. Determination of the coefficients requires that equations (3.14) and (3.15) 

are simplified to obtain a series of recurrence relations. It is cumbersome for one to go over the 

simplifications whenever a different value of k is desired.  One important contribution made here 

is the derivation of general recurrence relation valid for 1.k ≥ −  

3.2  Recurrence relations from the continuity equation 

The constants  0 0 1 1 1 1 0, , , , , ,
kn kn kn kn kn kn kn

A B A B A B A− −
± ± ± ± ± ± ±  and 0

kn
B± in the auxiliary solutions given in 

equations (3.14) and (3.15) are determine explicitly by using the continuity equation and the 

boundary conditions. To begin with the recurrence relations for general k (see equation (3.18)) 

shall be derived and later use some particular values to calculate the forces and to characterize 

the resulting flow field. To make the task easier, exponential rather than hyperbolic functions 

shall be used.  Now define,  

 
1 1

( ) ( )
2 2( , , ) 0, 1,1.

n n
i i

n kn knA B A e B e i
ξ ξ

ξ
+ − +

± ±Λ = + = −  (3.19) 

Making use of the auxiliary function solutions given by equations (3.10) and (3.11) in equation 

(3.18) and after lengthy simplifications we obtained, 
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0 0 0 1 1 1

( 1) ( 1) ( 1) ( 1)

1 1 0

( 1)

0 0 1

( 1) ( 1) ( 1)

0 5 2( ) ( 1 ) 2

2( 1 )( ) ( 2 )( 1 ) 2(1 2 )

2( ) 2( 1 ) ( 1)( ) ,

kn k n k n kn k n k n

kn k n kn

k n k n k n

A k n A n k A A A A

n k n k A n k n k A n A

k n A n k A k n n k A

− − −
± ± − ± + ± ± + ± −

± ± + ±

± − ± + ± −

= + − + + + + − −

+ + + − + + + + + + + +

+ − − + + + − + − +

 (3.20) 

 

0 0 0 1 1 1

( 1) ( 1) ( 1) ( 1)

1 1 1

( 1) ( 1)

0 0 0

( 1) ( 1)

0 5 2( ) ( 1 ) 2

2( 1 )( ) ( 1)( ) ( 2 )( 1 )

2(2 1) 2( ) 2( 1 ) .

kn k n k n kn k n k n

kn k n k n

kn k n k n

B k n B n k B B B B

n k k n B k n k n B n k n k B

n B n k B n k B

− − −
± ± − ± + ± ± + ± −

± ± − ± +

± ± − ± +

= + − + + + + − −

+ + + − + − + − + + + + +

− + + − + + +

 (3.21) 

Equations (3.20) and (3.21) are the general recurrence relations involving the constants that most 

be satisfied to ensure (2.2) holds. However, by themselves they are insufficient to determine the 

actual values of the constant A's and B's.  In order to achieve that we must examine the additional 

constraints that arise from the no slip boundary conditions acting on the surfaces of the spheres.  

4  Recurrence Relations Arising From the Boundary Conditions 

For the problem consider here (translational motion of two spheres in an unbounded quiescent 

fluid), it is necessary to fragment the problem into a number of cases viz: the k = 1 and k = 0 

modes. The k =1 mode corresponds to an arbitrary translational motion along the x and y plane 

whilst the k = 0 mode is for translation motion along the line of centre (z axis). Thus, in this 

formulation, we are considering the truncated form of equations (3.6) to (3.9) with k from 0 to 1. 

We desire to find the constants (A's and B's) such that equations (3.6) - (3.9) satisfy both the 

Laplace equation (which means they must satisfy (3.20) and (Error! Reference source not found.) 

above) and the no slip conditions on the surface of the spheres. In addition the velocity field 

should tend to zero as we moves far away from the spheres. We Consider the k = 1 first. 

4.1  Recurrence Relations for the k=1 mode 

In cylindrical coordinates, the velocity field is given by (see [15])  

 .
z z

i v i v i vρ ρ φ φ= + +v  (4.1) 

Here ,i iρ φ  and zi  are units vectors in the ,  and zρ φ  directions respectively. A particular solution 

satisfying the boundary condition can be written in terms of the x, y and z components of the 

velocity fields as, 

 cos( ) sin( ),N N

x yv U Uρ φ φ= +  (4.2) 

 sin( ) cos( ),N N

x yv U Uφ φ φ= − +  (4.3) 

 v _ z 0,=  (4.4) 
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where, ( ), ,N N N N

x y z
U U U U=  are the translational velocities of sphere N I, II=  in the x, y and z-

directions respectively. The linearity of these equations implies that the recurrence relations 

involving the x and y velocity components can be treated separately. In view of this, the formal 

treatment of translational motion along the y direction is presented below. The translational 

motion along the x direction can be treated in an entirely analogous fashion. For a sphere 

translating with only y component of the velocity, the no slip condition on its surface implies that 

 0 1 1

1 1 1( ,
2

)
1N

y
U W W W

c

ρ −= + +  (4.5) 

 1 1

1 1

1
( ,

2
)N

y
U W W

−= −  (4.6) 

 0 0

1 1

1
0 ( 2 .)

2

z
W W

c
= +  (4.7) 

Note that equations (4.5) to (4.7) give 6 sets of equations when evaluated on both spheres. 

Determination of a recurrence relation for the  k = 1 mode from the boundary conditions can be 

done in a number of ways.  

4.2  Numerical Calculations of the Constants 

The problem now is the determination of the sets of coefficients  

0 1 1 0

1 1 1 1{ },{ },{ },{ },
n n n n

A A A A
− 00 1 1

11 1 1{ },{ },{ },{ }nn n n
B B B B

−  such that the boundary conditions on the 

spheres and at infinity together with the continuity equations are satisfied. Since the functions  
0

1 ,W
1

1 ,W
− 1

1W  and 0

1W  are non-singular for 1 1,µ− ≤ ≤  then the boundary conditions far away 

from the spheres are satisfied. For Iξ ξ=  and ,IIξ ξ= −  equations (4.5) - (4.7) are evaluated on 

both spheres to give six equations. These equations were combined with two equations ((3.20) 

and (3.21)) from continuity, to get a total of eight linear equations that were solved numerically. 

Calculations of the coefficients were carried out using FORTRAN and MATLAB programming 

languages. To achieve that, the infinite series solution given by (3.10) and (3.11) were first 

truncated and retain only the leading N terms.  For each N algebraic system of equations in the 

unknowns  0

1 ,
n

A
1

1 1

1 , ,
n n

A A
− 0

1 ,nA 0

1 ,
n

B
1

1 ,
n

B
1

1n
B

−  and
0

1nB , n = 0, 1, 2…N were solved. In order to 

achieve good accuracy when the two spheres are in close proximity, a greater number of terms 

have to be retained in the series. The largest value of N used is 125 equivalents to a 1000 by 

1000 $times$ array. The calculations of the coefficients enable the calculations of the velocity 

field.  

It is ostensibly difficult also to say anything about the convergence of the constants by 

inspecting the equations. Perhaps the only method of establishing convergence is by numerical 

means. As suggested by [3] a very useful check for the convergence is that  
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 0 1

1 11 [2 ( 1) (2 1) ],n nsum n n A n A
−= + + +∑  (4.8) 

 0 1

2 1 1[2 ( 1) (2 1) ],n nsum n n B n B
−= + − +∑  (4.9) 

should vanish for N sufficiently large.  
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Figure 2  A plot of the convergence test using equations \re{sum1} and \re{sum2} against the number of equations 

for sphere sizes IR and 
3 410.5 ,100

II
R

− −= ×  m respectively, with the following translational 

velocities
33 10I

yU
−= × , 0II

yU =  m s-1 .  (a) Represent the calculation of the sum of the coefficients using 

equation 4.8. (b) Represent the calculation of the sum of the coefficients using equation 4.9. 

Figure 2 shows typical calculations of sum1 and sum2 for sphere sizes IR  and 

3 4100.5 , 10
II

R
− −×= × m respectively against the number of equations. It can be discerned from 

the Figure that the coefficients not only converges, but they do so quickly (small values of N). 

Next we consider the  k = 0 mode.  

4.3  Recurrence Relations for the k=0 mode 

The k = 0 mode corresponds to an axisymmetrical flow (see[ 9]) arising from the translational 

motion of the two spheres along their line of centres with constant velocity in an otherwise 

quiescent and unbounded fluid. The no slip boundary condition requires that 

 0,vρ =  (4.10) 

 0,vφ =  (4.11) 
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 .N

z z
v U=  (4.12) 

In view of equations (3.7)-(3.9), these conditions imply that 

 0 1 1

0 0 0

1
0 ( ,

2
)W W W

c

ρ −= + +  (4.13) 

 1 1

0 0

1
0 ( ,

2
)W W

−= −  (4.14) 

 0 0

0 0

1
( .

2
)2N

z

z
U W W

c
= +  (4.15) 

Procedure analogous to that used for  k =1 mode was followed to obtain the constants arising 

from k = 0 mode. 

5  Forces on translating spheres 

Consider a body with constant translating velocity in an unbounded fluid. Then the 

hydrodynamic force on the body is as given by (see [2]) 

 
body

· ,dS= ∏∫F
r

  (5.1) 

where ∏ is the pressure stress tensor given by  

 2 .p µ= − + ∆∏ I  (5.2) 

Here I is a tensor and ∆  is the rate of deformation tensor. Using equation (5.1Error! Reference 

source not found.), one can derive formulas for calculating the forces on the two sphere in the x, y 

and z directions. However, following the analysis of [11] one can write the equations for the 

force field in this formulation as  

 
3

, 1 12
0 1 1) )2 ( ,I II

x n n nF c A Bπµ − −
= − −

∞= − ±∑  (5.3) 

 
3

, 1 12
0 1 12 )( ,I II

y n n n
F c A Bπµ − −

=
∞= − ±∑  (5.4) 

 
5

, 0 02
0 0 0 ).2 (I II

z n n nF c A Bπµ =
∞= − ±∑  (5.5) 

It is to be noted that (+) is to be used for the sphere I while (-) is to be used for sphere II. All the 

force calculations in what follows are non-dimensionalised using the Stokes formula (see [1])  
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 ,

,6 ,I II

I IIF R Uπµ=  (5.6) 

where ,I II
U is speed of the spheres. The separations distances (the minimum distance between the 

spheres surface) are non -dimensionalised by the sum of the spheres radii as 

 
,

( )
.

I II

I II
r r

I II

d R R
d

R R

− +
=

+
 (5.7) 

 

6  Results and Discussion 

 

Figure 3 A plot of the calculated y-component of the forces for some sphere sizes against the separation distances. 

The dotted curve shows the forces on the sphere with size 
3105

I
R

−×= m and speed 
310I

yU
−= m s-1.  This sphere 

is interacting with another sphere which is ten times smaller and non-swimming. The blue curve shows the 

corresponding force calculations on one of the spheres when two spheres of equal sizes, I II

3R  R  05 1 −= = ×  m 

and speeds  
31 10I II

y yU U
−= = ×  m s-1 are interacting. The Figure is plotted using equation (5.4). 

A plot of the calculated y-component of the forces for some sphere sizes against the separation 

distances. The dotted (--) line show the forces on the sphere with size 35 10
I

R
−= × m and 

speed 31 10I

yU
−= × m s-1 . This sphere is interacting with another sphere which is ten times smaller 

and non-swimming. The solid line shows the corresponding force calculations on one of the 

spheres when two spheres of equal sizes, 35 10
I II

R R
−= = × m and speeds 31 10I II

y yU U
−= = ×  m s-

1 are interacting. The Figure is plotted using equation 5.4 . 

Figure3 shows the computed y-component of the forces for spheres of equal and unequal sizes 

and speeds. The equal spheres have sizes  35 10
I II

R R
−= = ×  m and speeds 31 10I II

y yU U
−= = × m 
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s-1.  The sizes of the unequal spheres are 3105 ,
I

R
−= × 405 1

II
R

−×=  m and speeds 

310 ,1 0I II

y yU U
−× ==     m s-1.  The calculations were done up to 1 separation distance. 

Subsequently, extrapolation was carried out to estimate the results at close distances. A particular 

problem associated with the force calculations is that the results are quite erratic as the spheres 

get very close. Accuracy can be improved by addition of more terms in the system of linear 

equations (that is by increasing  N). 

From Figure 3, two contrasting behaviour are demonstrated. For spheres of equal sizes, the force 

exerted on each sphere as they come closer, gets smaller. It is predicted that, the limiting value of 

the forces on either sphere is 82% of the corresponding result from Stokes formula (single 

sphere). However, when the spheres are unequal in size, the force on the larger sphere get bigger 

as the separations decreases. The prediction in this case, is that the limiting force is about 141% 

of the corresponding force on a solitary sphere calculated using the Stokes formula. From the 

point of view of prey perception the interest here is mainly in the case when the spheres are 

moving head on towards each other. Because in that scenario the various forces on the spheres 

(or cell bodies) will be greatest. In that case the line along which the spheres are moving towards 

each other will be taken as the z-axis and limit out investigation to the k = 0 mode.  

  

Figure 4  Computed z-component of the forces on unequal spheres 

 

Figure 4 shows a plot z-component of the forces on one of the spheres for the same sphere sizes 

and speeds shown on Figure 3. Comparing the results from the Figures we can say that the 

component of the forces on the spheres line of centres (vertical axis) tend to be larger. Generally 

speaking, the Figure shows that the forces exerted increases as the separation distances 

decreases. This tends to suggest that the flow field surrounding any one of the spheres will 
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experience greater hydrodynamic disturbances as the spheres get closer. Given that some non-

visual planktonic microorganisms can find food, mate or escape from impending predators 

through changes in the surrounding flow field (see [10,17]), the two sphere problem discussed in 

this paper can be used to study the process of perception of inert particles by hydromechanical 

means. 

7  Conclusions 

In this paper, we looked at the interaction between two spheres of arbitrary sizes and speeds 

falling in Stokes flow. Using bispherical coordinates, the system of partial differential equations 

were transformed into a truncated infinite system of linear equations that were solved 

numerically. These solutions enable the calculations of the velocity field and the hydrodynamical 

forces on the spheres. The main conclusions are as follows:  

1. The accuracy of the computed forces depends upon the separation distances.  

2. When the spheres are in close proximity, greater number of terms have to be retained in 
the series before convergence is achieved.  

3. The flow field surrounding one sphere is distorted by the presence of the other. The extent 
of the distortion depends upon the separation as well as the sphere sizes and speeds.  

4. The two sphere system can be used to study interactions between microorganisms such as 
plankton.  
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