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ABSTRACT: A new way of introducing a parameter to expand a family of exponential and Weibull distributions is 
introduced and studied. It is applied to yield a new two-parameter extension of the bivariate exponential distribution 
which may serve as a competitor to such commonly used two-parameter family of the life distribution as the Weibull, 
gamma and lognormal distributions. The general method is applied to give a new three-parameter Weibull distribution. 
The families of distributions expanded by the method introduced have the property that the minimum of a geometric 
number of independent random variables with common distribution in the family has a distribution again in the family.  
 
Keywords: Bivariate geometric distribution; Geometric extreme stability; Life distribution; Parametric family. 
 
 

1. Introduction 
     As stated by Ali, Mikhail and Haq (1978), exponential and Weibull distributions play important roles in 
analyses of life time or survival data. These are partly because of their convenient statistical theory, their 
important property of lacking memory as well as partly because of their constant hazard rates. In the 
situations where the one-parameter family of exponential distribution is not sufficiently broad, a number of 
wider families such as gamma, Weibull and Gompartz-Makeham distributions are in commonly use, 
instead. These families of distribution as well as their usefulness are discussed in detail by Cox and Oakas 
(1984). More complete treatments of each of these families of distributions can also be found in Johnson, 
Kotz and Balakrishnan (1994). 
     According Marshall and Olkin (1985), various methods can be used to introduce new parameters in 
order to expand families of distributions for either adding flexibility or to construct either covariate or 
correlation models. Introduction of a scale parameter leads to the accelerated life model, and taking powers 
of the bivariate survival function introduces a parameter that leads to the proportional hazards model. For 
example, in Weibull (1951) and Feller (1968), it is stated that the family of Weibull distributions contains 
the exponential distributions and it is constructed by taking powers of exponentially distributed random 
variables. The family of gamma distributions also contains the exponential distributions and it is 
constructed by taking powers of the lap lace transform of the exponentially distributed random variables. 
Arnold (1975) and more recently,  Marshall and Olkin (1997), introduced and presented a method of 
adding parameter to a family of univariate exponential distributions in order to expand it and make it more 
flexible distribution. In Hawkes (1972) and subsequently Marshall and Olkin (1997), the families of 
Weibull and gamma distributions were expanded by adding new parameters to it. Some properties of the 
new families of these distributions are also given in Marshall and Olkin (1997, 1988). 
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     In this paper, a general method of introducing a parameter into a family of bivariate distributions is 

presented and discussed. In particular, starting with a bivariate survival function F , the one-parameter 
family of bivariate survival function 
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where 1 ,   is proposed, introduced and discussed in section 2 of this write up. It worth noting that 

whenever 1, .H F     

 The particular case that  F  is an exponential distribution provides a new two-parameter family of 
distributions that may sometimes be a competitor to the usual bivariate Weibull and gamma families of 
distributions. This extended family is introduced and presented in section 3. Section 4 gives the method 
used to derive a three-parameter version of the weibull family of distributions. All the commonly used 
methods of introducing an additional parameter have a stability property. That is, if the method is applied 
twice, nothing new is obtained the second time around. Therefore, a power of an exponential random 
variables have a Weibull distribution, but the power of a Weibull random variables is nothing but another 

Weibull random variables. Similarly, if in (1.1) above, a bivariate survival function of the form H is 

introduced for F , then the equation (1.1) gives nothing new. This stability property and the derivation of 
equation (1.1) is presented and fully discussed in section 5 of this paper. Conclusion of the whole paper is 
considered in section 6 of this write up.    
 
2. Bivariate density and Hazard rate of the new family 

 The bivariate survival function H  given (1.1), always have easily-computed bivariate densities as long as 

the bivariate functions F  has a bivariate density function. In particular, if  F  has a bivariate density 

 , f x y  and hazard rate ,
F

r  then the bivariate survival function  H  has the bivariate density function 

 ,h x y  given by:  
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and the corresponding hazard rate is given by: 
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Therefore, 

   ,
lim lim , ; lim lim .F

x y x y

r x y
r x y 

   
  

Similarly, 

  lim lim , ; lim lim , .Fx y x y
r x y r x y

   
   

Based on the result obtained in equation (2.2) and Genest, Ghoudi and Rivest (1995), we can establish the 
following: 
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Also, 
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  From the same equation (2.2) above, we can see that 
 
 
, ;

,F

r x y

r x y


 is an increasing function in x  and y  

for 1   and a decreasing function in both x  and y for 0 1.   

If the hazard rate  0,0 0,F  0,0;r  at the origin of bivariate survival function behaves quite 

differently then it does for the Weibull or gamma distributions; for both these families, the distribution can 

be an exponential distributions, or    0, 0,0 ,r or r0,0     so that  0,0r  is discontinuous in 

the shape parameter. This is not the case with the bivariate family having hazard rates as given in (2.2). 

Thus, the bivariate family may be useful to make the bivariate function   , yF x clearer. 

 However, in spite of equations (2.3) and (2.4) above, it need not be that bivariate function  and 

the bivariate survival function  are at all similar to each other.  

 ,F x y
 ,H x y

 
3. A new family containing the bivariate Exponential Distributions 

Consider the bivariate function    ,F x y exp x y    ,  the two-parameter family of bivariate 

survival function  
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is obtained from equation (1.1). The special case 1    gives the bivariate exponential distribution. 
When 1,   this bivariate distribution is the conditional bivariate distribution, given of a 

random variable Z with the bivariate logistic survival function 
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Considering equation (3.1) above as a special case of (2.1) and (2.2), it can be shown that the bivariate 

survival  ,H x y has the bivariate density function h  given by  

  
   

 2 2, ; , , 0, 0; 0, 0 ,
1 1 1

x y x y

x y x y

e e
h x y x y

e e

   

   

    
 

  

  
    
         

  

and the corresponding hazard rate 
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Note that   , ;1, ,r x y   that is  , ; ,r x y    is decreasing function in both x and y  for 

0 1,  and that  , ; ,r x y    is an increasing function in x and y for  1.   

 From (2.3) and (2.4), it follows that  
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 As it was stated in Barlow and Proschan (1975), that distribution with an increasing hazard rate is new 
better than used. Similarly, distribution with a decreasing hazard rate is new worse than used. It follows 
that, when bivariate random variables X and Y have the bivariate distribution ,H the conditional bivariate 

survival function satisfies
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Proposition  3.1:  The bivariate function  log .,.; ,h   is convex for 0 1  and concave for 

1.    

  This result can be verified by differentiating the bivariate function  log .,.; ,h   twice with respect to 

both variables X and Y. Of course, this means that, for 1  , the bivariate density function  ,h x y is 

decreasing and, for 1  , .,.; ,h    is unimodal, with the mode of each of the two variables given as: 
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It follows from equations (3.4) and (3.5) that function H has finite moments of all positive orders. Direct 

computation shows that, if the two variables have distribution function  , ; ,H x y   , then each of the 

two variables has first moment given as 
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Note that this quantity is always positive. More generally, for the marginal distribution of random variable 
X, we have 
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which of course for r=1, it yields equation  (3.6). In the same way, for the marginal distribution of random 

variable y, the moment is as given in equation (3.7) above with Y replacing X.  thr
 The lap lace transform of marginal distribution h  of each of two random variables X and Y can also be 
obtained as follows. For the random variable X, it is follows as:        
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Similarly, that of random variable Y can be obtained in the same way by replacing X with Y.  

  Both (3.7) and (3.8) can be expressed as infinite series whenever 1  1.   From this, the integrands of 

(3.7) and (3.8) can be expanded in a power series and the result be integrated term by term to give:   
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That of marginal distribution of random variable Y can also be obtained in the same by using the 
corresponding moment and lap lace transform of the random variable Y. 
According to Karlin, Proschan and Barlow (1961) and as a consequence of proposition 3.1, total positivities 
properties yield moment inequalities that are not generally true. In particular, the coefficient of variation 

 is less than 1 when 1  and is greater 1 for 1.  2 is the variance while  is the first moment of 

random variables X or Y. It is easy to show that the  quartile thk kx of H is given by: 
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 The median of each of the random variables X and Y is also given by:                                     
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It can be seen that median, mode and expectations of random variable X or Y is an increasing function in 
 and decreasing function in the scale parameter .   
 From the monotonic of log ,x  and the fact that lolog y g 1x x   and lo as well as the 

values of random variables X and Y are both positive, it follows that  

g 1y y 
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   , but note that  
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is bounded and continuous in the parameters, like gamma 

distribution but unlike the Weibull distribution.  
4. Extension bivariate Weibull Distributions 
Given that  
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is a bivariate Weibull survival function, then equation  (1.1) gives the new three-parameter survival 
function 
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This geometric –extreme stable extension of the bivariate Weibull distribution may sometimes be a 
competitor to the more usual three-parameter Weibull distribution with survival 
function
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of (3.1). Therefore, from (3.6), it follows that, if X and Y have the bivariate survival function (4.2), then  
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 If 1  1,  then the moments can be obtained from equation (3.4) by applying change of variable 

technique that was earlier used in getting equation (4.3). However, those moments can not be given in 
closed form; thus, even the first moment of (4.2) must be obtained numerically. By writing  
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 It should be noted that the density and hazard rate of the distribution given by the equation (4.2), can be 
directly obtained from (2.1) and (2.2). In particular, the hazard rate is given by 
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 This function can be verified using elementary calculus 

that this hazard rate is increasing if 1, 1    and decreasing if  1, 1   . If 1,  then the 

hazard rate is initially increasing and eventually increasing, but there may be one interval where it is 
decreasing. Similarly, if 1,  then the hazard rate is initially decreasing and eventually decreasing, but 

there may be one interval where it is increasing. At those intervals, the slope changes are subtle and not 
easy to be seen graphically.    
 
5. Geometric-Extreme stability of bivariate Distribution 
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If  and  are sequences of independent identically distributed bivariate random 

variables with distributions in the family (1.1), and if N has a geometric distribution on {1,2,3,…}, then 

minimum and maximum of both and 

1 2, ,...X X 1 2, ,...,Y Y

 1 2, ,..., nX X X  1 2, ,..., nY Y Y  also have distributions in the 

family. To understand why this property may be of interest, recall that extreme value distributions are 
limiting distributions for extrema, and as such they are sometimes usefull approximation. In practice, a 
random variable of interest may be the extreme of only a finite, possibly random, number N of random 
variables. When N has a geometric distribution, the random variable has a particularly nice stability 
property, just like that of extreme value distributions. 

 Suppose that N is independent of  and  with a geometric 1 2, ,...X X 1 2, ,...,Y Y  p distribution, that is  

and let         1
1 , ,...,

n
P N n p p

   1, 2,3n 
 

   
   

1 1 2 1 1 2

2 1 2 2 1 2

min , ,..., , max , ,...,

min , ,..., , max , ,..., 5.1

n n

n n

U X X X V X X X

U Y Y Y V Y Y Y

 

   
 

Definition:  If  implies that the distributions of F    , ( 1,2)i iU V i  are in  , then   is said to be 

geometric-minimum stable (geometric-maximum stable). If   is both geometric-minimum and geometric-
maximum stable, then   is said to be geometric-extreme stable.    
 The term `maximum-geometric stable` has already been used by Rachev and Resnick (1991)  and 
subsequently by Marshall and Olkin (1997) to describe a related but more restricted concept. They apply 
the term not to families of distributions but to individual distributions; in their sense, a distribution is ` 
maximum-geometric stable` if the location-scale parameter family generated by the distribution is 
geometric-maximum stable in our sense. The two ideas essentially coincide for families  that are 
parameterized by location and scale. Most of the families considered in this paper are not of that form, a 
notable exception being the logistic distribution. For instance the family of logistic distributions, with 

bivariate survival functions of the form 



  1
, , , ;

1 x y
F x y x y

e  , 0,      
 is a 

geometric-extreme stable family; indeed, distributions in this family are geometric-extreme stable even in 
the sense of Rachev and Resnick (1991). The fact that this family is geometric-minimum stable was utilized 
by Arnold (1989) to construct a stationary process with logistic marginal. 

  For random variables  and  of equation (5.1), 1U 2U

      

 
   

 

1

1 2
1

, , , 1

,
, , . 5.2

1 1 ,

n n

n

H x y P U x U y F x y p p

pF x y
x y

p F x y






    

    
 



  As an extension of univariate parametric family of distributions given by Marshall and Olkin (1997), the 
bivariate parametric family of distributions given by the equation (5.2), is geometric-minimum stable. 

 For the random variables  and  , also defined in (5.1), arguments similar to those used above show 

that   

1V 2V

     
   1 2

,
, ,x , , ,

1 1 ,

pF x y
H x y P V V x y

p F x y
      

 
y  

so that  

   
   

 ,
, , , .

1 1 ,

pF x y
H x y x y

p F x y
    

 
5.3   

Based on Marshall and Olkin (1997), it can also be shown here that the bivariate parametric family stated in 
equation (5.3) is geometric-maximum stable.  
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The bivariate families defined in (5.2) and (5.3) above, combine nicely to form a single parametric family 

    ( , ) , ; , 0 ,F X Y H x y      where  ,H x y

 

is given by equation (1.1); in equation 

(5.2), 0 1,p   and, in (5.3), 1 1.p   It also worth noting that 

   , ;1 , ,H x y F x y therefore,  ,F x y ; further more, it is also true that  , ;H x y  is 

stochastically increasing in .    

   Proposition 5.1: The parametric family   of distributions of the form (1.1) is geometric-maximum 

stable.  
Proof. To verify this proposition, it is enough to verify closure of   under a kind of composition, as 

follows. Suppose that    
    

, ;
, ,

1 1 , ;

H x y
H x y

H x y

 

 


 
 where  , ;H x y   is given by (5.3). 

Then    
    

,
, .

1 1 ,

F x y
M x y

F x y






 
 This shows that  , yM x   , and, consequently,   has 

both geometric-maximum and geometric-minimum stability.  
 The proof of proposition (5.1) also shows that, if F  is replaced by any other distribution in  , then that 

distribution will also generate .        

 Some facts concerning geometric-extreme stable families are evident and may be worth noting: the same 
properties also hold for geometric-minimum and geometric-maximum stable families. 

(a) If  and  are geometric-extreme stable families, then 1 2 1 2  and 1 2  are geometric-
extreme stable families; the empty set is vacuously such a family. 

(b) Every distribution determines a geometric-extreme stable family If  

then Thus, the minimal geometric-extreme stable families form a partition 

of the set of all distributions into a set of equivalence classes. Here, a minimal geometric-extreme stable 
family is a family which is nonempty and has no nonempty geometric-extreme stable subfamily. 

F


 .F

  ,H F   .H F 

(c ) If and F H differ only by a scale (location) parameter, then  H can be obtained from  F by a 

common scale (location) change. 

(d) Suppose that  implies that F   0 0F  , and define F by 

         
 

,

0

1, 0, 0,
,

, 0,F x y

F

x y
F x y

x y


     0.
    

      If is geometric-extreme stable, then F  :F F  is geometric-extreme stable. 

(e) Let be a family of distribution functions, and let  F
         , : , ,H H x y F x y for some F

         .  

 If is geometric-extreme stable, then  ,  is geometric-extreme stable for all 0  and all real .  

5.1 Use of Geometric distribution in extreme stability property    

The geometric-extreme stability property of  F  is rather remarkable, and it depends upon the fact 

that a geometric sum of independent identically distributed geometric random variables has a geometric 
distribution. This partially explains why random-minimum stability cannot be expected if the geometric 

distribution is replaced by some other distribution on  1,2

s a Poisson d

,... .

istribu

Thus, if the above development is repeated, 

for instance with the assumption that N-1 ha tion, then  would be replaced by a family 

that would not be Poisson-extreme stable.  
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If F is a distribution function and      , ; ,
n

H x y F x y p
1

n
n

 





 has the stability property then the 

functional equation  

1.    

nder certain regularity conditions, the only solution to this equation 
onclusion 

variate 
thod of 

eferences 

l, N.N and Haq, M.S (1978): A class of bivariate distributions including the bivariate logistic. J. Mult. 
12. 

ameters in 

nd  

discrete distribution must satisfy the 

       ,
n

m n
m n nz p p z p   

 
  

1 1 1

0
n m n

z
  

  

 

U is the geometric distribution. 
6. C
   It can be concluded here that the general method of introducing one-parameter into a family of bi

developed and presented. The extended exponential distribution provide a new medistribution is 
adding two-parameter to a family of bivariate distribution which may sometimes compete with bivariate 
Weibull and gamma families of distributions. Another method of derivation of three-parameter version of 
Weibull family of distribution is presented. It is also stated in this paper that all the methods of adding 
parameter to a different families of different distributions commonly possessed stability properties.  
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