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ABSTRACT: This paper designed a Mathematical Model which provides a good description of   blood 
flow regimes via constricted and unconstricted vessels that induces high blood pressure. It also presents a 
solution which will predict the rates of blood flow and the pressure profiles across the domain.  
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Introduction 
 
      Problems associated with blood flow in the system are numerous. Such problems can 
tend to make the heart malfunction which lead to a mild or severe disease condition. One 
of such problem is the high blood pressure (hypertension). Blood flow to different part of 
the body by constriction and dilation of vessel walls. As the bloods circulate through the 
body, it might come across vessel blockage. Such blockage may tend to make the heart to 
exert more pressure in order to keep the blood in circulation. High blood pressure is the 
main cause to hypertension which can result in heart attack, heart failure, brain stroke etc. 
      It is therefore of great importance to explore more quantitative and qualitative 
approach so as to remedy the disease described above. This in turn culminated in a 
mathematical approach which could predict and provide solution to the problem above.  
     In the past there has been mathematical models developed for blood flow. H., Yao et 
al (2000) provides a good computational modeling of blood flow through curved stenosed 
arteries. W., Kathleen (2003) developed a model on human blood flow measurement and 
modeling. Jacobson et al (2002) described a model on sausage-string appearance of 
arteries and arterioles. His study reveals that under certain conditions, the cylindrical 
shape of a blood vessel may be unstable which can lead to exhibiting constriction and 
dilation of the vessel. 
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Procedure 
 
         Blood flow from a region of high pressure to region of low pressure except in 
certain situations. As blood flows to an organ, it is controlled by the constriction and 
dilation of vessel walls. Reduction in blood flow in the system due to resistance causes 
the heart to exert more pressure to meet with the amount of blood for circulation by 
inducing high blood pressure.        Within vessels, there exist thin layers of blood which 
doest not move in contact with the wall of the vessel. The other layers within the vessels 
have a low and high velocity respectively, with stream centre having greatest velocity. 
The blood flow in the vessel is laminar. Laminar flow occurs at velocities up to a critical 
velocity. The flow is turbulent above this velocity. 
        Turbulence probability is related to the diameter of the vessel and blood viscosity is 
expressed as        

                      e

Dv
R




                                                                       

Where  eR  is the Reynolds Number 

    D= Diameter of the tube concerned 
     = Viscosity 
      V= velocity of the fluid 
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Fig. 2 Flow through a constricted vessel   
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 Basic Assumptions   and  Formulation of the Model Equation 
 

 The flow is steady and incompressible 
 The flow is laminar and turbulent in constricted vessel 
 The fluid is Newtonian 
 The length of the blood vessel is constant 

        As we have said earlier, the flow is laminar. Laminar depends on eR  which depends 

on v and D. The higher value of eR , the higher the turbulence probability.  
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Fig. 3 
 
  From fig.3 above, consider a small cross section  of the vessel, and let J be the 

volume flow rate and 

( )A X

ep  the excess pressure (given by the difference between normal 

pressure and hydrostatic pressure).  
   The motive here is to obtain an in viscid momentum equation describing the flow  of 
blood within the unconstricted distensible vessel. So at a given point X along the length 
of the vessel and at a given time t, the flow rate J , is  
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which is the equation of mass conservation in the tube (vessel)  
From Area of linear expansivity  

ep
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            
A

wh rea, A=Areaere A = change in A  and  

ep  is the presssure     ep
A

                 (9)     A

ion for the d
       

Where  is the proportionality constant known as distensibility.  
So equation (9) is the equat istensibility of the tube.  
So from equation (9)  epAA                           (10)     
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density  g=acceleration and h=distance 
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  When integrat

                           
Equation (20) is the invis
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Substituting into equation (21) yields an expression for flow of blood.  
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expressed as  

The system is described by equation (20) and (22), which describes the model for 
the flow of blo
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Where 
c

Y


  is called t
A

he admittance  

er of blood in contact with the wall of the vessel does not move which means 
 dis n

the bound with distance

 
 Boundary Conditions: 
 
The thin lay
that velocity is zero at this point with ta c e zero at any time which gives 
U (0,t) = 0 

 2  At  upper the blood is in contact with the vessel wall 
aking the velocity zero since there is no movement occurring, this gives  m

U ( ,2 t) = 0. 
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ANAL

ted distensible tube (vessel) and the vessel with constriction in it respectively, 

YSIS OF THE MODEL EQUATION  
 

Since equations (22) and (25) describe the model for the flow of blood within the 
uncontric
solutions to these two equations can be dealt with knowing the nature of blood flow in the 
vessel.  
 Ordinarily, the blood flowing in the vessel (blood vessel) sets up a pressure wave 
that starts from 0x (systole) to lx  (diastole). At 0x , the value opens where the 
pressure wave starts due to the opening of the value and come to rest at lx  when the 
value closes. The closure of the value prevents the falling back of the blood flowing and 
the pressure sustained is responsible for the flowing of blood down the tissue. At 0t  
the aortic  clo nd the left ventricular pressure is about 80mmHg at diastole with 
first derivative of the blood pressure equals zero. Our consideration is just from the 
distance  0x  to lx   as shown belo

value

        
           
    

        
 

The positio ds on  dist
re at any time t can be expressed as  

ses a

w
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            

    
 
 
Fig. 4 
 

n of any blood particle depen  its ance x from one end and on the 
instant in time. The pressu

f  txp ,  where x is the distance from 0e x to lx   form the equations (22) and (25) 

hich is wave equation.  
In solving the wave equation, the boundary and initial conditions need to be set.  

 

w
 
 
 

Flow of steady wave  Flow of normal 
turbulent wave   

x =0 x = l  
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Bound

The blood vessel permits flow from 

ary Conditions  
 

0x  and lx  for all values of time t. So 
 becomes   txpe ,
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Initial pressure at 0t  is therefore     mmHgxfxpe 800,   and at that initial 

condition, the first derivative of the blood pressure is designated by  xg  i.e  
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Substituting back into equation (22) yields        xxctx   2  
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And  
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 Our solution becomes  

  xcBxAx c
 sincos                                                                             (29) 

For the second PDE  (28) 
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For the same value of k also gives the solution  
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Where A, B, C and D are arbitrary constant. The above equation must satisfy the 
boundary and initial conditions  
Applying the boundary condition  
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Differentiating general solution w.r.t t and putting t = 0 gives  
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Fig. 5 

to the body system as it is expressed by the equation.  
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Thus the solution is 
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ummary and Conclusion 
 

o situations viz; 

uld be the flow rate sin  the relationship between flow rate and resistance is 

 
 
 
 
S

In this study, we have developed mathematical models that describe the velocity 
and pressure profiles in the human blood vessels. We have considered tw
healthy unconstricted distensible vessel and diseased constricted vessel.  
     In building these models, we are inspired by the series of assumptions as: (i) The flow 
is steady and incompressible (ii) The flow is laminar and as well turbulent in constricted 
vessel (iii) The fluid (blood) is Newtonian (iv) The length of the blood vessel is constant.  
     From this, we see that the blood flow rate depends on the area of the vessel and the 
velocity of blood flow, change in area is accompanied by change in blood flow rate. This 
means that the longer the length of the vessel, the greater would be the resistance and the 
lesser wo ce

cesis

pressureinChange
J

tanRe
  given as 

 
     Velocity of flow is also inversely proportional to the pressure, that is to say, that 
increase in blood velocity will bring about the reduction in pressure.  
     Two solutions for the model equations were obtained using Fourier analysis. In both 
cases, the excess pressure is a function of constants ‘c’ and ‘b’ respectively. The values 
of both constants are determined by the value of the distensibility    of the vessel which 
is a property of elasticity of blood vessels. In the first case which describes the model for 
the flow of blood through the uncosntricted distensible vessel, the value of the 
distensibility of the vessel was high thereby making the constant ‘c’ smaller and in turn 
the value of the excess pressure also become smaller. While in the case II, which 
describes the model for the blood flow in constricted vessel, the value of the distensibility 
of the vessel is low thereby making the value of the constant ‘b’ and the excess pressure 
high. The low distensibility of the vessel was due to the debris and cholesterol deposited 
in the blood vessel which reduces the elasticity of the vessel making it unable to expand 
and accommodate the volume of the blood pumped from the heart and thereby making 

 than the excess 
ressure in an unconstricted vessel due to the distensiblity of the vessel.  

(40a) 

the heart work harder which leads to high blood pressure (Hypetension).  
     In conclusion, the excess pressure in constricted blood vessel is higher
p
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