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ABSTRACT: Prolonged culture of pluripotent and multipotent stem cells exposes the cells to strong selection 
pressures, often resulting in genomic alterations. Any genetic manipulation of the cells may further jeopardize their 
genomic stability. Genomic aberrations affect the differentiation capacity of stem cells, their stem cell identity and 
their tumorigenicity, and should thus be routinely evaluated for their proper use in basic research and in clinical trials. 
Here we review the common methods currently available to analyze the genomic integrity of stem cells, and present 
a recently developed method for the evaluation of the genomic integrity of stem cells by their gene expression profiles. 
We describe the principles of this method, provide guidelines for its implementation, and discuss its advantages and 
limitations compared to other available methods. 
 
 
 
Introduction 
 
Genomic instability in stem cells 
 

Stem cells grown in culture are exposed to strong selection pressures that often results in genomic 
alterations, varying in size from point mutations, through copy number changes in small genomic elements 
(e.g. amplification of repetitive sequences and retroelement mobility), to large chromosomal aberrations, 
trisomies and monosomies (Lefort et al., 2009). While these aberrations are assumed to occur randomly, 
only those that confer a selective advantage would prevail and ultimately take over the culture. Different 
culturing conditions, such as media composition, cell passaging techniques, and freeze-thaw cycles, may 
affect the nature and the frequency of the acquired aberrations; however, no culturing technique is immune 
to genomic instability, and it is thus considered, for most practical purposes, a “necessary evil” that does 
not seriously compromise the utility of aberrant cells in basic science. 

Stem cells acquire genomic changes throughout their expansion in culture. Much attention has been 
drawn in recent years to the genomic aberrations acquired by human embryonic stem cells (hESCs) and 
human induced pluripotent stem cells (hiPSCs), from the resolution of point mutations to the resolution of 
whole-chromosome trisomies (Baker et al., 2007; Ben-David et al., 2011; Gore et al., 2011; Hussein et al., 
2011; Laurent et al., 2011; Mayshar et al., 2010). More recently, we have shown that human adult stem 
cells that are expanded in culture are also prone to acquire chromosomal aberrations (Ben-David et al., 
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2011). In both pluripotent and multipotent stem cells, the genomic aberrations are eventually acquired in a 
large portion of the cell lines, and the aberrant cells can take over the population within very few passages 
(Ben-David et al., 2011; Mayshar et al., 2010), making the genomic instability of human stem cells a 
prevalent phenomenon in need of proper evaluation and consideration. 

The genomic alterations in human stem cells should not be disregarded as “force majeure” of unclear 
functional significance. These aberrations have been shown to interfere with the differentiation capacity of 
stem cells, thus jeopardizing basic research conducted with these cells (Biancotti et al., 2010; Enver et al., 
2005; Werbowetski-Ogilvie et al., 2009). Moreover, with the arising of newer techniques for cellular 
reprogramming, comparisons between different types of stem cells (e.g. between ESCs and iPSCs or 
between iPSCs of various origins) have become widespread; when normal diploid cells are unintentionally 
compared to aberrant aneuploid cells, this may completely change the biological interpretation of such a 
comparison. Most importantly, the most prominent promise of stem cells is their potential to serve in cell-
based therapy. Given that genomic aberrations are a characteristic of practically all cancer types, where 
they serve both as a driving force and as a by-product of tumorigenesis, these aberrations may increase the 
tumorigenicity of the cells, preventing their clinical implementations (Ben-David and Benvenisty, 2011; 
Ben-David et al., 2010; Goldring et al., 2011). The recent finding that each stem cell type is prone to acquire 
a characteristic set of genomic aberrations, which correlate the ones most frequently seen in tumors of the 
same cell-lineage (Ben-David et al., 2011), further increases this concern; and preliminary results that 
suggest that aberrant hESCs indeed generate more aggressive teratomas in an immunodeficient mouse 
model (Blum and Benvenisty, 2009; Werbowetski-Ogilvie et al., 2009), make this concern concrete. 

The implications of genomic aberrations on stem cell research are far-reaching and encompass all of 
the potential applications of these cells (summarized in Figure 1). The potential use of aberrant stem cells 
in cell therapy is obviously hindered by increased tumorigenicity risk, by their limited differentiation 
capacity, and by possible functional deficiency in the differentiated cells. Their use for disease modeling is 
jeopardized due to artificial effects induced by the aneuploidy, and due to a possible failure to accurately 
recapitulate the disease-specific cells and phenotypes. Their use in drug screening studies is problematic, 
as the aberrant expression patterns and cellular properties may affect their sensitivity to drugs, leading to 
both false positive and false negative “hits”. Finally, their use in basic research of development and of stem 
cell properties may be negatively affected, since these cells do not mimic normal development. This applies 
the most to PSCs, which are commonly used to recapitulate early embryonic development, since 
chromosomal aberrations in viable cells are actually an artifact of culture propagation whereas in normal 
development they are almost always embryonic lethal. 

It is important to note that genomic instability is not a characteristic of human stem cells only, but is a 
common phenomenon in mouse stem cells as well (Ben-David and Benvenisty, 2012; Pasi et al., 2011; 
Quinlan et al., 2011), and it is likely to be found in stem cell cultures of all the species used in biomedical 
research. In the pluripotent field, mouse PSCs are the most studied system, and the genomic alterations in 
these cells may have broad consequences. In addition to their effect on the differentiation propensity and 
on the tumorigenicity of the cells, genomic instability in mouse PSCs may also influence the pluripotency 
of the cells, evaluated by their contribution to chimeras, germline transmission and tetraploid 
complementation (Liu et al., 1997). This further complicates the correct interpretation of studies conducted 
with aberrant mouse PSCs (Ben-David and Benvenisty, 2012). 

In view of their high prevalence, rapid acquisition, tissue-specific identity, tumor-likeness, and the 
consequent functional significance, genomic alterations need to be rigorously and routinely evaluated in all 
types of stem cell cultures, and especially when comparing between cultures, when modeling diseases, or 
when striving to take them into the clinic. However, since most of the current available methods for 
evaluation of genomic integrity are technically-complicated, time-consuming, labor-demanding and/or 
costly, the analysis of genomic integrity has not yet become a common practice in most stem cell research 
arenas (with the exception of human PSCs, which are examined more often than other stem cell types). 
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Figures 

 
 
Figure 1: Implications of genomic aberrations on stem cell applications. 
Genomic aberrations have potential detrimental consequences on all current applications of stem cells: cell therapy, 
disease modeling, drug screening, and the research of development and of stem cell biology. The applications appear 
in bold beside their schematic representation, and the most problematic implications of aneuploidy are mentioned 
below each one. All of the bullets apply to pluripotent stem cells, and most of them are also relevant to multipotent 
stem cells. 

 
Common methods for evaluation of genomic integrity 

The current techniques to evaluate the genomic integrity of stem cells are mostly based on direct 
cytogenetic and DNA-based analyses. The most commonly used technique, by far, is the traditional 
karyotype analysis. Karyotyping is based on arresting the cells during cell division, followed by their 
staining, usually with Giemsa staining (G-banding). Based on the cytogenetic characteristics of the 
individual chromosomes at metaphase (e.g. size, centromeric location, unique pattern of light and dark 
bands), chromosomal abnormalities can be observed under the microscope. The average resolution of G-
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banding is about 10 Mb, depending on the region of interest (Meisner and Johnson, 2008; Speicher and 
Carter, 2005). The sensitivity of the method is quite high, since single cells are examined. Usually, 20 
metaphases are observed, resulting in a detection threshold of >5% (that is, when over 5% of the cells in 
the population harbor a chromosomal aberration, it is likely to be detected). While it is relatively 
economical, karyotyping is still technically challenging and requires skilled personnel. 

Spectral karyotyping (SKY) is a molecular cytogenetic technique that improves the resolution of the 
traditional karyotype (Schrock et al., 1996). Chromosome-specific DNA sequences are labeled with 
different fluorophores, generating unique fluorescent probes for each pair of chromosomes. The 
individually colored chromosomes are then visualized, and genomic changes can be detected. SKY is as 
sensitive as traditional karyotype, but is somewhat more expensive. Its resolution is higher than that of G-
banding, and gets to about 2 Mb for the identification of translocations and complex karyotypes (Schrock 
et al., 1996). However, the resolution is much lower for the identification of intra-chromosomal 
duplications and deletions (Meisner and Johnson, 2008), especially when compared to that of the molecular 
methods described in the next paragraphs. In order to detect submicroscopic chromosomal aberrations 
beyond the detection threshold of SKY, complementary fluorescent in-vitro hybridization (FISH) may be 
applied. However, a suspected region of interest has to be determined in advance, in order to make this 
method useful. 

Array-based molecular analyses of genomic integrity (also called “virtual karyotypes”) exhibit a 
dramatically-improved detection resolution, of ∼20 Kb to 1 Mb (depending on the probe density on the 
array (Speicher and Carter, 2005). The best known of these techniques are array-comparative genomic 
hybridization (aCGH) and single nucleotide polymorphism (SNP) array. In aCGH, the test sample and a 
normal reference sample are differentially labeled with different fluorophores, and are hybridized to 
thousands (or even millions) of probes. The ratio of fluorescence intensity is then measured, enabling to 
detect copy number changes along the genome. Similarly, SNP array is also based on labeling DNA 
fragments and hybridizing them on the array to allele-specific oligonucleotide probes. SNP array has a 
couple of advantages over aCGH: it can detect loss of heterozyogosity (LOH) events, and it can detect 
polyploidy (that is, the addition of an entire set of chromosomes, which cannot be detected in aCGH because 
test and control samples contain the same proportion of haploid sets per hybridized DNA) (Lefort et al., 
2009). However, both techniques also have limitations when compared to cytogenetic methods: (a) they are 
more expensive; (b) their sensitivity is rather low – as they are based on DNA extracted from the cell 
population, genomic aberrations can be detected in a mosaic culture only if present at over 20% of the cells 
(Lefort et al., 2009; Meisner and Johnson, 2008); and (c) they cannot detect balanced translocations and 
inversions. 

The integrity of stem cells can also be examined by whole genome sequencing, resulting in an 
extremely high single-base resolution, and the ability to detect a change as subtle as point mutation (Gore 
et al., 2011). However, the costs of this approach are considerably higher than the other techniques, and it 
is relatively much more demanding, which would probably prevent it from becoming a common practice 
in routine stem cell integrity analyses, at least for the next few years. 

The cytogenetic and DNA-based methods for karyotyping are limited to the cell lines one works with 
at the lab, as they require either the cells of interest themselves, or DNA extracted from these cells. We 
have recently developed a methodology for detecting chromosomal aberrations in stem cells, based on the 
gene expression patterns of the cells. We have implemented this methodology for the accurate evaluation 
of the genomic integrity of human PSCs (both hESCs and iPSCs) (Mayshar et al., 2010), human multipotent 
stem cells (neural, mesenchymal and hematopoietic stem cells) (Ben-David et al., 2011), and mouse 
pluripotent stem cells (ESCs, iPSCs and epiblast stem cells) (Ben-David and Benvenisty, 2012). In the next 
section we will describe our methodology, and in the Discussion section we will discuss its strengths and 
limitations compared to the other methods. The comparison between the different methods to analyze the 
genomic integrity of stem cells is summarized in Figure 2. 
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Figure 2: A comparison of available methods to analyze the genomic integrity of stem cells. 
The common cytogenetic and molecular methods for evaluation of genomic integrity are schematically presented 
(top). The resolution, sensitivity, costs, strengths and limitations of each method are compared in the table (bottom). 

 
 

Studying chromosomal aberrations in stem cells using gene expression profiles 
 
The rationale 

The methodology is based on the notion that if there's an extra copy of a chromosomal locus, there 
would be – on average – more expression from that specific region, and vice versa. Large clusters of genes 
with significantly higher or lower levels of gene expression could therefore indicate genomic gains or 
losses, respectively. The correlation between copy number and gene expression levels has been recognized 
recently in human tissues and cell lines, including in many cancers (Henrichsen et al., 2009; Hughes et al., 
2000; Phillips et al., 2001; Pollack et al., 2002; Schoch et al., 2005; Tsafrir et al., 2006). However, the 
heterogenic nature of tumors and cancer cell lines has prevented an accurate detection of genomic 
alterations based on their gene expression solely. 

In contrast to heterogenic tumor populations, all of the stem cell types that we have examined can be 
characterized by a unique and rather homogeneous gene expression profile (Ben-David et al., 2011; 
Mayshar et al., 2010). Furthermore, in cancerous cells some aberrations may be so common, that practically 
all cell cultures (or all primary tumors) of the respective cancer type exhibit them; in contrast, most stem 
cell lines are diploid, and no single aberration has been found to occur in the majority of the cell lines. 
Therefore, for each specific gene cluster, the median expression values would necessarily represent normal 
expression levels that result from two functioning copies of the respective genomic region, provided that 
the dataset of stem cells from which these median values are extracted is large enough. 
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The methodology 
The methodology is based on two bioinformatic analyses. In the first one, the number of over-

expressed genes is determined for each sample, and these genes are then subjected to a location enrichment 
analysis. In the second one, gene expression data is processed into a CGH-analysis program, which is 
“tricked”, as it is supplied with RNA expression profiles instead of DNA profiles. An algorithm is then 
applied to detect gene expression biases: if there's a gene expression bias along a large enough region, this 
would suggest a chromosomal gain or deletion in this particular locus. Naturally, in order to adequately 
implement these bioinformatic analyses, rigorous statistical tests are required, as well as validation of 
positive and negative results in order to estimate the resolution, sensitivity and accuracy (that is, the false 
positive and false negative rates) of the methodology. These might vary between different stem cell types 
and different microarray platforms (Ben-David et al., 2011; Mayshar et al., 2010). A schematic flow-chart 
of the analysis is presented in Figure 3. 
 

 
 
Figure 3: A flow chart of gene expression-based analysis of genomic integrity. 
This chart presents the workflow of the methodology described in the text. The details of each step are elaborated in 
the section entitled “studying chromosomal aberrations in stem cells using gene expression profiles”. 

 
Subjecting the sample of interest to DNA expression microarray 
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Naturally, the first step in the analysis is to derive RNA from the sample of interest and to perform a 
gene expression microarray. This microarray will then be used both for analyzing the expression profiles 
of the cells and for analyzing their genomic stability according to the biological question at hand. 
 
Composing a database of gene expression profiles 

A control database with gene expression profiles from the stem cell type of interest should be prepared 
in order to compare the expression patterns of the sample of interest to normal expression patterns of the 
relevant cell type. This step should be done only once for each microarray platform, and in future 
experiments the microarray results can be immediately compared to the existing database. Conveniently, 
gene expression microarrays are routinely deposited in open websites, such as Gene Expression Omnibus 
(GEO,http://www.ncbi.nlm.nih.gov/geo) and European Bioinformatics Institute databases (EMBL-EBI, 
http://www.ebi.ac.uk/microarray-as/ae), and can be downloaded from these websites. It is important to 
make sure that the downloaded microarrays were conducted using the same platform as was the microarray 
of interest (that is, the microarray from the cell culture to be examined for aneuploidy). Only samples of 
cells from the same tissue and developmental stage should be included in the analysis, in order to keep the 
level of background noise to minimum. 

The raw data should then be normalized, using dedicated software. For example, Affymetrix 
microarrays are normalized using Expression Console (Affymetrix), according to the manufacturer's 
instructions. Besides normalization of expression values, this process also involves quality control and 
removal of problematic samples. In order to further decrease potential noise, gene expression analysis 
software, such as Partek Genomics Suite (Partek), may be used for hierarchical clustering, which enables 
the removal of outlier samples that cluster apart from the main group (i.e. cluster together with outgroup 
cell lines, rather than with samples of the same cell type); outliers may be the product of poor RNA quality, 
poor microarray or high levels of spontaneous differentiation, and should thus be detected and removed. 

Next, genes that are not expressed in the stem cells of interest should be filtered out of the database, 
either by an Absent/Present call or by setting a threshold of minimal expression level. In order to prevent a 
bias towards genes that are over-represented in the specific platform used, multiple probesets for the same 
gene are removed, so that each expressed gene is ultimately represented by one probeset only. In order to 
reduce bias due to low expression levels, it is also recommended to raise values under a certain threshold 
to a “floor” threshold. Expressed genes with very high variation in their expression values among normal 
samples, may also be excluded from further analysis. 

Lastly, for each gene in the composed list, the median expression of all samples is calculated. In order 
to reduce possible bias from any given experiment, large groups of similar samples with highly similar gene 
expression profiles (as judged by hierarchical clustering) should be averaged for the sake of calculating a 
reliable population median. These median values are the expression values to which the sample/s of interest 
will be compared. 
 
Location enrichment analysis 

The first bioinformatic analysis is based on a chi-square-like statistical test. The idea that underlies 
this test is that a gain of genetic material should result in over-expression of genes inside this region, so that 
this genomic region will be over-represented when the chromosomal locations of all over-expressed genes 
are dissected. Similarly, a loss of genetic material should result in over-representation of this region when 
the chromosomal locations of all under-expressed genes are examined. 

The analysis begins with composing separate lists of up-regulated and down-regulated genes for each 
analyzed sample. Up-regulated genes are determined as genes that are expressed over ∼1.5-fold than the 
median expression of that gene. Down-regulated genes are genes expressed less than ∼0.5-fold than the 
median expression. 

The lists of over-expressed and under-expressed genes are then analyzed using gene expression 
analysis software, such as EASE (http://david.abcc.ncifcrf.gov/ease/ease1.htm) or Expander 
(http://acgt.cs.tau.ac.il/expander). Such programs employ a built-in location enrichment algorithm that 
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performs statistical tests to discover over-represented genomic regions in its input list of genes. Multiple-
testing correction should naturally be performed to determine the real statistical significance of the results. 
 
CGH-PCF analysis 

The second bioinformatic analysis makes use of the same microarray data, but employs a completely 
different statistical test, and is thus complementary rather than redundant. Instead of counting the over- or 
under-expressed genes, this analysis examines the average ratio between gene clusters expression levels 
and their median expression levels, and identifies spatial patterns throughout the genome. 

The first step in this analysis is to divide each gene expression value, in each sample, by its median 
expression across all samples. The file of relative values is then imported to a CGH analysis program, such 
as CGH-explorer (http://heim.ifi.uio.no/bioinf/Projects/CGHExplorer/). Once the data is uploaded to the 
software, the program's piecewise constant fit (PCF) algorithm is applied, in order to detect gene expression 
regional biases. A few parameters need to be determined at this point, the most important of which are the 
“least allowed deviation” and “least allowed aberration size”. Different parameters may be required for 
different stem cell types, different species and/or different chromosomes, and the specific parameters for 
each case should be adjusted using samples with known genomic aberrations (see section “Resolution and 
accuracy”). The results may be visually presented by drawing moving-average plots; however, the call 
whether a regional bias indeed represents a genomic aberration is made by the PCF-algorithm, and is thus 
unprejudiced. 
 
Resolution and accuracy 

If working with stem cell types or microarray platforms that have not been previously evaluated, it is 
important to carefully evaluate the resolution and accuracy of the methodology, as there's often a trade-off 
between the two. The resolution of the location enrichment analysis depends on the resolution of the 
selected software used, and is often limited to the resolution of a chromosomal band. The resolution of the 
CGH-PCF analysis is higher, and it depends on the selected parameters. We previously reported the 
identification of validated 11.7 Mb gain and 8.8 Mb loss in pluripotent stem cells, suggesting the validated 
resolution of the analysis to be ∼10 Mb (Mayshar et al., 2010). 

The parameters of the CGH-PCF algorithm may have considerable influence on the accuracy of the 
results, and should therefore be adjusted for each stem cell type and microarray platform, using known 
aberrations. Preferably, cell lines that have been cytogenetically analyzed and/or subjected to molecular 
karyotyping (CGH or SNP arrays) at the same passage of RNA extraction, should be used for parameter 
tuning. Confirmed diploid cells analyzed in this manner can determine the false positive rate of the selected 
parameters, whereas confirmed aberrations can serve for determining the false negative rate. At the 
abovementioned resolution of ∼10Mb, we could reach a false positive rate as low as 0.005, with practically 
no false negatives, when analyzing human pluripotent stem cells (Mayshar et al., 2010). 

For the sake of further increasing the reliability of the method, only aberrations that meet the stringent 
criteria for statistical significance in both of the bioinformatic analyses should be considered true 
aberrations. Those identified by only one of the analyses should be confirmed by one of the traditional 
methods in order to confidently assess the status of their genomic integrity. 

 
 

Discussion 
 
Gene expression profiling is commonly used to characterize stem cells. The arsenal of available 

methods for analyzing the genomic integrity of stem cells has been recently enriched by an indirect, yet 
accurate and specific, gene expression-based method. This method has several salient advantages over the 
cytogenetic and DNA-based methods (see Figure 2). Importantly, it enables the retrospective analysis of 
multiple cell lines that would otherwise not be accessible to any single study. As gene expression arrays are 
routinely deposited in the GEO database, very large datasets are available for such analyses, resulting in 
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comprehensive studies that cover the majority of existing stem cell lines (Ben-David et al., 2011; Ben-
David and Benvenisty, 2012; Mayshar et al., 2010). 

Another obvious advantage of this method is that once a recurrently aberrant region has been 
identified, the genes that reside inside this region can be readily analyzed. The functional implications of 
genomic abnormalities thus identified become immediately apparent with the identification of the genes 
whose expression is actually perturbed. For example, we have reported that the hallmark pluripotency genes 
NANOG and GDF3 reside inside the minimal amplification in chromosome 12p that characterizes hESCs 
and hiPSCs. Using expression data, we could demonstrate that these genes are indeed consistently up-
regulated as the aberration spreads in culture (Mayshar et al., 2010). 

Moreover, using the same biological material both for gene expression profiling and for assessing the 
genomic integrity is advantageous, economically and biologically. From the economic point of view, it 
saves the time, effort and money that would otherwise be invested in a dedicated examination of genomic 
integrity (using one of the other methods); from the biological point of view, it prevents mistakes and 
misinterpretation of results obtained from aberrant cell cultures. Since genomic alterations can be acquired 
in stem cells very rapidly, within few passages, and since the gene expression profiling is often conducted 
several passages after the karyotype evaluation, expression analyses have been unintentionally conducted 
with aberrant cells, as we have shown in human PSCs (Mayshar et al., 2010), human adult stem cells (Ben-
David et al., 2011) and mouse PSCs (Ben-David and Benvenisty, 2012). Naturally, this gap between the 
time of expression profiling and of karyotype analysis is completely abolished when expression profiling 
itself is used for virtual karyotyping. 

However, the gene expression-based method also has disadvantages and limitations (see Figure 2). 
The first of which is that only cell lines whose gene expression profile has been analyzed similarly, can be 
compared to each other. This means that only once a microarray platform has been used for a sufficient 
number of samples, the generation of a normal expression baseline would become feasible, making it useful 
for the purpose of genomic integrity evaluation. Moreover, the parameters should be adjusted and validated 
for each platform and each stem cell type separately, adding a further technical complexity to the analysis. 

As for the resolution of the method, while it is about the same as that of traditional karyotyping, it is 
not as high as that of CGH or SNP arrays. Furthermore, the resolution is limited by the number of expressed 
genes in the examined cell type. The unbalanced distribution of genes along the genome dictates that 
euchromatic regions with higher gene abundance will be detected at higher resolution than heterochromatic 
regions. The sensitivity of the method is also lower than that of CGH arrays, SNP arrays or karyotype 
analysis in identifying abnormalities that exist only in a subpopulation of the culture. For an abnormality 
to be manifested in the gene expression data strongly enough to allow its detection, we estimate that it needs 
to be harbored by at least one third to one half of the cells in the examined culture. 

Another potential limitation of the method is that epigenetic regional modifications may affect the 
interpretation of the data. This is not a serious limitation in the analysis of the autosomal genome: clusters 
of genes that are known to be co-regulated do not come up as false aberrations; and identified aberrations 
do not harbor genes known to be co-regulated or to share functional annotations. However, this limitation 
prevents the analysis of chromosome X, due to the variation in chromosome X-inactivation, which is very 
common in PSCs and may be wrongly interpreted as aberrations (Bruck and Benvenisty, 2011; Mayshar et 
al., 2010). Chromosome Y cannot be readily subjected to the analysis as well, due to the paucity of genes 
in this chromosome, therefore the method is currently limited to the analysis of the genomic integrity of the 
autosomal genome. 

In conclusion, the new methodology for the analysis of the genomic integrity of stem cells is a 
complementary method, which – like any other method – has its strengths and pitfalls in comparison to 
other available technologies. Considering the genomic instability of stem cells during their propagation in 
culture, we hope that this method will promote and facilitate the routine and thorough analysis of the 
genomic integrity of stem cells. 

 



African Scientist Volume 16, No. 1 (2015) 

 36

ACKNOWLEDGEMENTS: N.B. is supported by The Legacy Heritage Biomedical Science Partnership 
Program of the Israel Science Foundation (grant No. 943/09) and by the Centers of Excellence Legacy 
Heritage Biomedical Science Partnership (grant No. 1801/10). 
 
 
 
References 
 
1. Baker D.E, Harrison N.J, Maltby E, Smith K, Moore H.D, Shaw P.J, Heath P.R, Holden H, Andrews P.W. 

Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007; 25:207–
215. 

2. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. 
Rev Cancer. 2011; 11:268–277. 

3. Ben-David U, Benvenisty N. High prevalence of evolutionarily conserved and species-specific genomic 
aberrations in mouse pluripotent stem cells. Stem Cells. 2012; 30:612–622.  

4. Ben-David U, Benvenisty N, Mayshar Y. Genetic instability in human induced pluripotent stem cells: 
classification of causes and possible safeguards. Cell Cycle. 2010; 9:4603–4604.  

5. Ben-David U, Mayshar Y, Benvenisty N. Large-scale analysis reveals acquisition of lineage-specific 
chromosomal aberrations in human adult stem cells. Cell Stem Cell. 2011; 9:97–102.  

6. Biancotti J.C, Narwani K, Buehler N, Mandefro B, Golan-Lev T, Yanuka O, Clark A, Hill D, Benvenisty N, 
Lavon N. Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells. 2010; 
28:1530–1540.  

7. Blum B, Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle. 
2009; 8:3822–3830.  

8. Bruck T, Benvenisty N. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent 
stem cells. Stem Cell Res. 2011; 6:187–193. 

9. Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Abu Dawud R, et al. 
Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum. Mol Genet. 
2005; 14:3129–3140.  

10. Goldring C.E, Duffy P.A, Benvenisty N, Andrews P.W, Ben-David U, Eakins R, French N, Hanley N.A, Kelly 
L, Kitteringham N.R, et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell. 2011; 8:618–628.  

11. Gore A, Li Z, Fung H.L, Young J.E, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel M.A, 
Kiskinis E, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011; 471:63–67.  

12. Henrichsen C.N, Vinckenbosch N, Zollner S, Chaignat E, Pradervand S, Schutz F, Ruedi M, Kaessmann H, 
Reymond A. Segmental copy number variation shapes tissue transcriptomes. Nat Genet. 2009; 41:424–429.  

13. Hughes T.R, Roberts C.J, Dai H, Jones A.R, Meyer M.R, Slade D, Burchard J, Dow S, Ward T.R, Kidd M.J, et 
al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet. 2000; 25:333–337.  

14. Hussein S.M, Batada N.N, Vuoristo S, Ching R.W, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson 
C, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011; 471:58–62.  

15. Laurent L.C, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness J.V, Lee S, Barrero M.J, et al. 
Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs 
during reprogramming and time in culture. Cell Stem Cell. 2011; 8:106–118.  

16. Lefort N, Perrier A.L, Laabi Y, Varela C, Peschanski M. Human embryonic stem cells and genomic instability. 
Regen Med. 2009; 4:899–909.  

17. Liu X, Wu H, Loring J, Hormuzdi S, Disteche C.M, Bornstein P, Jaenisch R. Trisomy eight in ES cells is a 
common potential problem in gene targeting and interferes with germ line transmission. Dev Dyn. 1997; 209:85–
91.  

18. Mayshar Y, Ben-David U, Lavon N, Biancotti J.C, Yakir B, Clark A.T, Plath K, Lowry W.E, Benvenisty N. 
Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem 
Cell. 2010; 7:521–531. 

19. Meisner L.F, Johnson J.A. Protocols for cytogenetic studies of human embryonic stem cells. Methods. 2008; 
45:133–141.  

20. Pasi C.E, Dereli-Oz A, Negrini S, Friedli M, Fragola G, Lombardo A, Van Houwe G, Naldini L, Casola S, Testa 
G, et al. Genomic instability in induced stem cells. Cell Death Differ. 2011; 18:745–753. 



U. Ben-David & N. Benvenisty 

 37

21. Phillips J.L, Hayward S.W, Wang Y, Vasselli J, Pavlovich C, Padilla-Nash H, Pezullo J.R, Ghadimi B.M, 
Grossfeld G.D, Rivera A, et al. The consequences of chromosomal aneuploidy on gene expression profiles in a 
cell line model for prostate carcinogenesis. Cancer Res. 2001; 61:8143–8149.  

22. Pollack J.R, Sorlie T, Perou C.M, Rees C.A, Jeffrey S.S, Lonning P.E, Tibshirani R, Botstein D, Borresen-Dale 
A.L, Brown P.O. Microarray analysis reveals a major direct role of DNA copy number alteration in the 
transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. USA. 2002; 99:12963–12968. 

23. Quinlan A.R, Boland M.J, Leibowitz M.L, Shumilina S, Pehrson S.M, Baldwin K.K, Hall I.M. Genome 
Sequencing of Mouse Induced Pluripotent Stem Cells Reveals Retroelement Stability and Infrequent DNA 
Rearrangement during Reprogramming. Cell Stem Cell. 2011; 9:366–373. 

24. Schoch C, Kohlmann A, Dugas M, Kern W, Hiddemann W, Schnittger S, Haferlach T. Genomic gains and losses 
influence expression levels of genes located within the affected regions: a study on acute myeloid leukemias 
with trisomy 8, 11, or 13, monosomy 7, or deletion 5q. Leukemia. 2005; 19:1224–1228. 

25. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith M.A, Ning Y, Ledbetter D.H, Bar-
Am I, Soenksen D, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996; 273:494–497.  

26. Speicher M.R, Carter N.P. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev 
Genet. 2005;6:782–792. [PubMed: 16145555] [Cross Ref] 

27. Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, Zeng Z, Liu H, Krier C, Stengel R.F, Barany F, et al. 
Relationship of gene expression and chromosomal abnormalities in colorectal cancer. Cancer Res. 2006; 
66:2129–2137.  

28. Werbowetski-Ogilvie T.E, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith 
M.J, Dingwall S, Carter T, et al. Characterization of human embryonic stem cells with features of neoplastic 
progression. Nat Biotechnol. 2009; 27:91–97. 

 
Last revised March 28, 2012. Published June 10, 2012. This article should be cited as: Ben-David, U., and Benvenisty, 
N., Analyzing the genomic integrity of stem cells (June 10, 2012), StemBook, ed. The Stem Cell Research 
Community, StemBook, doi/10.3824/stembook.1.150.1, http://www.stembook.org. 
 
Copyright: © 2012 Uri Ben-Davi and Nissim Benvenisty. 
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
Bookshelf ID: NBK133286PMID: 23658973DOI: 10.3824/stembook.1.150.1 
 
NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. 
StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008-. doi: 10.3824/stembook.1.150.1 
 


